A Multi-Agent Off-Policy Actor-Critic Algorithm for Distributed Reinforcement Learning
نویسندگان
چکیده
منابع مشابه
Off-Policy Actor-Critic
This paper presents the first actor-critic algorithm for off-policy reinforcement learning. Our algorithm is online and incremental, and its per-time-step complexity scales linearly with the number of learned weights. Previous work on actor-critic algorithms is limited to the on-policy setting and does not take advantage of the recent advances in offpolicy gradient temporal-difference learning....
متن کاملSoft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Model-free deep reinforcement learning (RL) algorithms have been demonstrated on a range of challenging decision making and control tasks. However, these methods typically suffer from two major challenges: very high sample complexity and brittle convergence properties, which necessitate meticulous hyperparameter tuning. Both of these challenges severely limit the applicability of such methods t...
متن کاملLinear Off-Policy Actor-Critic
This paper presents the first actor-critic algorithm for o↵-policy reinforcement learning. Our algorithm is online and incremental, and its per-time-step complexity scales linearly with the number of learned weights. Previous work on actor-critic algorithms is limited to the on-policy setting and does not take advantage of the recent advances in o↵policy gradient temporal-di↵erence learning. O↵...
متن کاملDiff-DAC: Distributed Actor-Critic for Multitask Deep Reinforcement Learning
We propose a multiagent distributed actor-critic algorithm for multitask reinforcement learning (MRL), named Diff-DAC. The agents are connected, forming a (possibly sparse) network. Each agent is assigned a task and has access to data from this local task only. During the learning process, the agents are able to communicate some parameters to their neighbors. Since the agents incorporate their ...
متن کاملACCNet: Actor-Coordinator-Critic Net for "Learning-to-Communicate" with Deep Multi-agent Reinforcement Learning
Communication is a critical factor for the big multi-agent world to stay organized and productive. Typically, most multi-agent “learning-to-communicate” studies try to predefine the communication protocols or use technologies such as tabular reinforcement learning and evolutionary algorithm, which can not generalize to changing environment or large collection of agents. In this paper, we propos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2020
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2020.12.2021